Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis
DOI:
https://doi.org/10.18203/2320-6012.ijrms20192874Keywords:
Antibacterial, Food waste, Gold nanoparticles, Green chemistry, WatermelonAbstract
Background: Globally, large quantities (tonnes) of diverse sources of food wastes derived from horticulture are produced and offer a valuable renewable source of biochemical compounds. Developing new recycling and food waste utilisation strategies creates unique opportunities for producing gold (Au) nanoparticles with desirable antibacterial properties. The present study used an eco-friendly procedure for biologically synthesizing gold (Au) nanoparticle shapes from waste Citrullis lanatus var (watermelon).
Methods: The green chemistry-based procedure used in this study was straightforward and used both red and green parts of waste watermelon. The generated Au nanoparticles were subsequently evaluated using several advanced characterization techniques. The antibacterial properties of the various extracts and synthesised nanoparticles were evaluated using the Kirby-Bauer sensitivity method.
Results: The advanced characterization techniques revealed the Au particles ranged in size from nano (100 nm) up micron (2.5 µm) and had a variety of shapes. The red watermelon extract tended to produce spheres and hexagonal plates, while the green watermelon extract tended to generate triangular shaped nanoparticles. Both red and green watermelon extracts produced nanoparticles with similar antibacterial properties. The most favourable response was achieved using a 5:1 green watermelon-based mixture for Staphylococcus epidermidis, which produced a maximum inhibition zone of 12 mm. While gram-negative bacteria Escherichia coli produced a maximum inhibition zone of 10 mm for the same mixture.
Conclusions: The study has shown both red and green parts of waste watermelon can be used to produce Au nanoparticles with antibacterial activity towards both Escherichia coli and Staphylococcus epidermidis. The study has also demonstrated an alternative method for producing high-value Au nanoparticles with potential pharmaceutical applications.
Metrics
References
Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3(2):34-55.
Azzazy HM, Mansour MM, Samir TM, Franco R. Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clin Chem Lab Med. 2012;50(2):193-209.
Zheng Y, Sache L. Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiation Res. 2009;172(1):114-9.
Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnel JW. In: vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomed. 2012;7:1251-8.
Hernández-Sierra JF, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén AD, et al. Antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine. NBM. 2008;4(3):237-40.
Cole LE, Ross RD, Tilley JMR, Gogola VT, Roeder RK. Gold nanoparticles as a contrast agents in X-ray imaging and computed tomography. Nanomed. 2015;10(2):321-41.
Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977-85.
Jain PK, Huang X, El-Sayed IH, EL-Sayed MA. Noble metals on the nano-scale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41(12):1578-86.
Ali DM, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf Biointerfaces. 2011;85(2):360-65.
Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327-33.
Deckers SA, Loo S, Lhermite MM, Boime HN, Menguy N, Reynaud C, et al. Size composition and shape dependent toxicological impact of metal oxide nano-particles and carbon nano-tubes toward bacteria. Env Sci Techn. 2009;43(21):8423-29.
Brayner R, Iliou FR, Brivois N, Djediat S, Benedetti M, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters. 2006;6(4):866-70.
Uma Suganya KS, Govindaraju K, Kumar GV, Dhas ST, Karthick V, Singaravelu G, et al. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng. C. 2015;47:351-56.
Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed. 2012;7:2767-81.
Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed. 2011;6:1117-27.
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50.
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plants. Biotechnol Adv. 2013(2);31:346-56.
Shah M, Fawcett D, Sharma S, Tripathy S, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278-308.
Inbakandan D, Venkatesan R, Khan AS. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongate (Dendy, 1905). Colloids Surf B. 2010;81(2):634-9.
Kumar P, Singh P, Kumari K, Mozumdar S, Chandra R. A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater Lett. 2011;65(4):595-7.
Pasca RD, Mocanu A, Cobzac SC, Petean I, Horovitz O, Cotisel TM. Biogenic syntheses of gold nanoparticles using plant extracts. Particul. Sci. Technol. 2014;32(2):131-7.
Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem. Eng. 2013;1(6):591-602.
Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. J Nanoparticles. 2014;302429:1-14.
Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: A review. J Nanotechnol. 2014;510246:1-8.
Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. In: Murray PR, Baron EJ, eds. Manual of clinical microbiology, 9th ed. ASM Press, Washington DC; 2007: 1152-1172.
Yang N, Hong WL, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014;134:67-70.
Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-60.
Mocanu A, Horovitz O, Racz P, Cotisel TM. Green synthesis and characterization of gold and silver nanoparticles. Rev Roum Chim. 2015;60(7-8):721-6.
Singh C, Sharma V, Naik PK, Khandelwal V, Singh H. A green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Digest J Nanomaterials Biostruct. 2011;6(2):535-42.
Pasca RD, Mocanu A, Cobzac SC, Petean I, Horovitz O, Cotisel TM. Biogenic syntheses of gold nanoparticles using plant extracts. Particul Sci Techno. 2014;32(2):131-7.
Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus Rosa sinensis. Physica E. 2010;42(5):1417-24.
Kumar P, Singh P, Kumari K, Mozumdar S, Chandra R. A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater Lett.2011;65(4):595-7.
Poinern GEJ, Chapman P, Le X, Fawcett D. Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bulletin. 2013;46(3):165-73.
Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62(30):4588-90.
Wang L, Chen X, Zhan J, Chai Y, Yang C, Xu L, et al. Synthesis of gold nano and microplates in hexagonal liquid crystals. J Phys Chem B. 2005;109(8):3189-94.
Alexandrides P. Gold nanoparticle synthesis, morphology control and stabilisation facilitated by functional polymers. Chem Eng Technol. 2011;34(1):15-28.
Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44(16):5778-92.
Hernández-Sierra JF, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén AD, et al. Antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomed NBM. 2008;4(3):237-40.
MubarakAli D, Tahjuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloid Surf B. 2011;85(2):360-5.