Insulin resistance: is it a feedback mechanism or a therapeutic target in type 2 diabetes?
DOI:
https://doi.org/10.18203/2320-6012.ijrms20193421Keywords:
Electron transport chain inhibitors, Insulin resistance, Mitochondrial dysfunction process, Type 2 DiabetesAbstract
Insulin resistance is an essential pathological condition leading to hyperglycemia of blood, and hence insulin resistance is considered as a therapeutic target. The experimental evidence of studying the effect of naphthalene on Anadara granosa, a bivalve, indicated mitochondrial dysfunction and osmolarity change in them. This communication tries to suggest whether insulin resistance is a feedback mechanism to protect the influx of nutrients into the cells demanding osmoregulation of cells.
Metrics
References
Taylor R. Insulin resistance and type 2 diabetes. Diabetes. 2012;61(4):778-9.
Klip A, Marette A, Dimitrakoudis D, Ramlal T, Giacca A, Shi ZQ, et al. Effect of diabetes on glucoregulation. From glucose transporters to glucose metabolism in vivo. Diab Care. 1992;15(11):1747-66.
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(2):S157-63.
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 Diabetes. Sci. 2005:307(5708):384-7.
Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Rev. 2010;31(3):364-95.
Eapen, JT. Physiological and biochemical responses of Anadara granosa to naphthalene, 1987.
Eapen JT, Patel B. Haematological evaluation of naphthalene intoxication in the tropical arcid blood clam Anadara granosa. Marine Biol. 1989;100(2):223-6.
Patel B, Eapen JT. Physiological evaluation of naphthalene in the tropical blood clam Anadara granosa (L). Mar Biol. 1989;103:193-202.
Patel B, Eapen JT. Biochemical evaluation of naphthalene intoxication in the tropical clam Anadara granosa (L). Mar Bio. 1989;103:203-9.
Eapen JT. An electronic device to record the behavioural activity of bivalves. Indian J Expt Biol. 1997;35(6):663-4.
Nagy IZ. Cytosomes (yellow pigment granules) of molluscs as cell organelles of anoxic energy production. Int Ref Cyto. 1977:49:331-77.
Harmon HJ, Sanborn MS. Effect of naphthalene on respiration in heart mitochondria and intact cultured cells, environmental research, 1982;29(1):160-73.
Beach AC, Harmon J. Additive effects and potential inhibitory mechanism of some common aromatic pollutants on in vitro mitochondrial respiration. J Biochem Tox. 1992;7(3):155-61.
Pardini RS, Heidker JC, Baker TA, Payne B. Toxicology of various pesticides and their decomposition products on mitochondrial electron transport. Arch Env Contamination Toxicol. 1980;9(1):87-97.
Eapen JT. Let food be your medicine. Inclusion of wheat porridge, a whole grain meal, and legumes lowers postprandial glucose in the diabetic patient. J Med Res Innov. 2017;1(2):AW1-5.
Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Bio Med Research Intern. 2014;7.
Eapen, JT. Mankind's amazing progress: is it based on science and technology or intuition from god?. Int J Creative Res Thoughts (IJCRT). 2018;6(2):181-9.
Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: the review of current evidence. Int J Prev Med. 2013;4(1): S36-S42.
Durak A, Gawlik-Dziki U, Kowlska I. Coffee with ginger-interactions of biologically active phytochemicals in the model system. Food Chem. 2015;1:166:261-9.
Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA, Conn CA. Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutr Metab Insights. 2012;5:59-70.