The role of epigenetic modifications in Alzheimer’s disease


  • Shierly . Master Program of Biomedicine in Anti-Aging Majoring, Faculty of Medicine of Udayana University, Denpasar, Bali
  • Chandra Wirawan General Practitioner, Dumai General Hospital, Dumai, Riau Province



Alzheimer’s, Epigenetic, DNA methylation, Histone modification, ncRNA


Aging is the primary risk factor for various neurodegenerative diseases, including Alzheimer’s disease (AD), which is the most frequent form of Dementia. AD is progressive neurodegenerative disease with abnormal protein production, inflammation and memory deterioration. The main clinical manifestations of this illness are cognitive disturbance and memory deficit. Abnormal of beta-amyloid (Aβ), neurofibrillary tangles (NFTs) and tau deposition are the most common findings pathology in this disease. Recent studies indicate that epigenetic modifications strongly correlate in developing these pathology and disease progression. The hallmarks of epigenetic modifications are DNA (deoxyribonucleic acid) methylation, histone modifications, chromatin remodeling and ncRNA (non-coding ribonucleic acid) expressions. This review aims to explain the potential mechanisms of epigenetic modifications associate with this disease. The general conclusion of this review is that epigenetic modifications play an ultimate role in AD and there are potential biomarkers of AD and future novel treatment of AD based on epigenetics.


Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer’s disease: as it was in the beginning. Rev Neurosci 2017;28(8):825-43.

World Health Organization. Dementia, 2020. Available at: Accessed 22 October 2020.

Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Europ J Neurol. 2018;25:59-70.

Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Budd S et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535-62.

Morley JE, Farr SA, Nguyen AD. Alzheimer Disease. Clin Geriatr Med. 2018;1-7.

Delgado-Morales R, Agis-Balboa RC, Esteller M, Berdasco, M Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clinic Epigenet. 2017;9(67).

Mitra S, Behbahani H, Eriksdotter M. Innovative therapy for Alzheimer’s disease with focus on biodelivery on NGF. Front Neurosci. 2019;13(38).

Mantzavinos V, Alexiou A. Biomarkers for Alzheimer’s Disease Diagnosis. Curr Alzheimer Res. 2017;14:1149-54.

Honig LS, Small SA, Mayeux R. Alzheimer Disease. In: Louis ED, Mayer SA, Rowland LP, editors. Merritt’s Neurology. 13th ed. Washington: Wolters Kluwer; 2015:411-8.

Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzhei Dise. Clin Med. 2016;16(3):247-53.

Scheltens P, Blennow K, Breteler MMB, Strooper B De, Frisoni GB, Salloway S et al. Alzheimer’s disease. Lancet. 2016;388(10043):505-17.

Lopez JAS, Gonzalez HM, Leger GC. Alzheimer’s disease. In: DeKosky ST, Asthana S, editors. Handbook of Clinical Neurology. 3rd ed. London: Elsevier BV. 2019:231-55.

Whitwell JL. Alzheimer ’s disease neuroimaging. Curr Opin Neurol. 2018;31:1-9.

Atri A. The Alzheimer’s Disease Clinical Spectrum. Med Clin NA. 2019;103(2):263-93.

Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974;184(4139):868-71.

Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98(3):285-94.

Golov AK, Razin SV, Gavrilov AA. Nucleosomal packaging of eukaryotic DNA and regulation of transcription. Biopolym Cell. 2014;30(6):413-25.

Espocito M, Sherr GL. Epigenetic modifications in Alzheimer’s neuropathology and therapeutics. Front Neurosci. 2019;13(476).

Wang KC, Chang HY. Epigenomics-technologies and application. Circ Res. 2018;122(9):1191-9.

Coneys R, Wood IC. Alzheimer’s disease: the potential of epigenetic treatments and current clinical candidates. Neurodegenerat Disea Managem. 2020;10(3):543-58.

Liu X, Jiao B, Shen L. The epigenetics of Alzheimer’s disease: factors and therapeutic implications. Front Genet. 2018;9(579).

Stoccoro A, Coppede F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegenerative Disea Managem. 2018;8(3):181-93.

Wang F, Chen D, Wu P, Klein C, Jin C. Formaldehyde, epigenetics, and Alzheimer’s disease. Chem Res Toxicol. 2019;32:820-30.

Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheim Disease. 2018;62(3):913-32.

Xu Y, Xu L, Han M, Liu X, Li F, Zhou X et al. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. Biochemic Biophysic Res Communicat. 2019;520(1):41-6.

Mano T, Nagata K, Nonaka T, Tarutani A, Imamura T, Hashimoto T et al. Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRACA1 in Alzheimer’s disease. Proc Natl Acad Sci. 2017;114(45):E9645-54.

Kobayashi N, Shinagawa S, Nagata T, Shimada K, Shibata N, Ohnuma T et al. Usefulness of DNA methylation levels in COASY and SPINTI gene promoter regions as biomarkers in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment. Plos One. 2016;11(2).

Xie B, Liu Z, Liu W, Jiang L, Zhang R, Cui D et al. DNA methylation and tag SNPs of the BDNF gene in conversion of amnestic mild cognitive impairment into Alzheimer’s disease: a cross-sectional cohort study. J Alzheim Dise. 2017;58(1):263-74.

Xu AH, Yang Y, Sun YX, Zhang CD. Exogenous brain-derived neurotrophic factor attenuates cognitive impairment induced by okadaic acid in a rat model of Alzheimer’s disease. Neural Regen Res 2018;13(2):2173-81.

Smith RG, Hannon E, Jager PLD, Chibnik L, Lott SJ, Condliffe D et al. Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer’s disease neuropathology. Alzheimers Dement. 2018;14(2):1580-8.

Li QS, Sun Y, Wang T. Epigenome-wide association study of Alzheimer’s disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clinic Epigenet. 2020;12(149).

Sao T, Yoshino Y, Yamazaki K, Ozaki Y, Mori Y, Ochi S et al. TREM1 mRNA expression in leukocytes and cognitive function in Japanese patients with Alzheimer’s disease. J Alzheim Dise. 2018;64(4):1275-84.

Yeh FL, Hansen DV, Sheng M. TREM2, microglial, and neurodegenerative diseases. Trend Molecul Medic. 2017;23(6):512-33.

Smith A, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J et al. Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging. 2016;47:35-40.

Celarain N, Gordoa JSRD, Zelaya MV, Roldan M, Larumbe R, Pulido R et al. TREM2 upregulation correlates with 5-hydroxymethycitosine enrichment in Alzheimer’s disease hippocampus. Clinic Epigenet. 2016;8(37).

Qazi TJ, Quan Z, Mir A, Qing H. Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Molecul Neurobiol. 2017;55(2):1026-44.

Ellison EM, Abner EL, Lovell MA. Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer’s disease. J Neurochem. 2017;140(3):383-94.

Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Tren Genet. 2016;32(1):42-56.

Nativio R, Lan Y, Donahue G, Sidoli S, Berson A, Srinivasan AR et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nature Genet. 2020;52(10):1024-35.

Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E et al. A histone acetylation-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nature Neurosci. 2018;21(11):1618-27.

Liu D, Tang H, Li XY, Deng MF, Wei N, Wang X et al. Targeting the HDAC2/ HNF-4A/miR-101b/AMPK pathway rescues tauopathy and dendritic abnormalities in Alzheimer’s disease. Molecul Therap. 2017;25(3):752-64.

Janczura KJ, Volmar CH, Sartor GC, Rao SJ, Ricciardi NR, Lambert G et al. inhibition of HDAC3 reverses Alzheimer’s disease-related pathogenesis in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci. 2018;115(47):E11148-57.

Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Frontal cortex epigenetic dysregulation during the progression of Alzheimer’s disease. J Alzheimer’s Dise. 2018;62(1):115-31.

Lee HY, Fan SJ, Huang FI, Chao HY, Hsu KC, Lin TE et al. 5-aroylindoles act as selective histone deacetylase 6 inhibitors ameliorating Alzheimer’s disease phenotypes. J Medic Chem. 2018;61:7087-102.

Wong SY, Tang BL. SIRT1 as a therapeutic target for Alzheimer’s disease. Rev Neurosci. 2016;27(8).

Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropept. 2018;71:54-60.

Hadar A, Milanesi E, Walczak M, Puzianowska-Kuznicka M, Kuznicki J, Squassina A et al. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Scient Repor. 2018;8(8465).

Gomes BAQ, Silva JPB, Romeiro CFR, Santos SMD, Rodrigues CA, Goncalves PR et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxidat Medic Cellul Longev. 2018;8152373.

Wang Z, Xu P, Chen B, Zhang Z, Zhang C, Zhan Q et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging. 2018;10(4):775-88.

Yang B, Xia Z, Zhong B, Xiong X, Sheng C, Wang Y et al. Distinct hippocampal expression profiles of long non-coding RNAs in an Alzheimer’s disease model. Mol Neurobiol. 2017;54:4833-46.

Derkow K, Rossling R, Schipke C, Kruger C, Bauer J, Fahling M et al. Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. Plos One. 2018;13(7).

Huang W, Li Z, Zhao L, Zhao W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomedic Pharmacother. 2017;97:46-57.

Kenny A, McArdle H, Calero M, Rabano A, Madden SF, Adamson K et al. Elevated plasma microRNA-206 levels predict cognitive decline and progression to dementia from mild cognitive impairment. Biomolecules. 2019;9(734).

Fotuhi SN, Khalaj-Kondori M, Feizi MAH, Talebi M. Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Molecul Neurosci. 2019;69:351-9.




How to Cite

., S., & Wirawan, C. (2020). The role of epigenetic modifications in Alzheimer’s disease. International Journal of Research in Medical Sciences, 9(1), 294–299.



Review Articles